

14. ENSEÑANZA SITUADA DE LOS SISTEMAS DE CONTROL Tecnologías emergentes en el aula de Educación Tecnológica

Cristian Alejandro Merolla¹

Resumen

En el contexto actual de acelerada transformación tecnológica, enseñar contenidos vinculados a los sistemas de control en el área de Educación Tecnológica requiere una mirada didáctica que trascienda la mera transmisión de conocimientos técnicos. Este artículo se propone analizar el desarrollo de propuestas de enseñanza en el nivel secundario, poniendo el foco en la selección de recursos accesibles, el trabajo colaborativo entre docentes y la reflexión crítica sobre la incorporación de tecnologías emergentes, como la robótica educativa y la programación por bloques.

La propuesta parte de la necesidad de articular saberes disciplinares con criterios didácticos y enfoques pedagógicos inclusivos y contextualizados. Desde esta perspectiva, enseñar sobre sistemas de control no solo implica abordar conceptos como la automatización, la lógica de funcionamiento o el uso de kits tecnológicos, sino también generar condiciones para que los estudiantes comprendan las relaciones que se dan entre las tecnologías de control con la sociedad, la cultura y procesos productivos.

A través de un enfoque tecnopedagógico situado, se busca promover una enseñanza crítica de las tecnologías de control, que habilite a los y las docentes a diseñar experiencias significativas y contextualizadas. El artículo presenta un recorrido formativo que integra los fundamentos teóricos y pedagógicos con criterios didácticos de la enseñanza de contenidos de sistemas de control.

Palabras claves: Sistemas de control, programación, robótica, kits didácticos.

¹Cristian Alejandro Merolla. Docente e Ingeniero Electrónico con experiencia en el ámbito de la educación técnica y en aplicaciones industriales. Desde 2014 se desempeña como docente en los niveles medio y superior, así como capacitador de profesionales del sector industrial. Está especializado en pensamiento computacional, automatización y electrónica, con dominio de plataformas abiertas como Scratch, MakeCode, Micro:bit y Arduino. Su travectoria incluse trabajos en entornos industriales, donde ha desarrollado tareas de mantenimiento.

Su trayectoria incluye trabajos en entornos industriales, donde ha desarrollado tareas de mantenimiento eléctrico/electrónico, automatización y desarrollo de proyectos con PLC y HMI. Ha participado en procesos de mejora continua, soporte técnico y servicios especializados para plantas industriales y embarcaciones, combinando sólidos conocimientos técnicos con habilidades para la resolución de problemas en campo.

1. Introducción

La aceleración de los cambios tecnológicos y la creciente incorporación de sistemas automatizados en diversos ámbitos de la vida cotidiana, productiva y social exigen repensar la enseñanza de contenidos vinculados al control y la automatización en la escuela secundaria. En este escenario, el área de Educación Tecnológica se enfrenta al desafío de revisar y actualizar sus enfoques didácticos, analizando las posibilidades que brindan las tecnologías emergentes como la robótica educativa y la programación por bloques, sin perder de vista la necesidad de formar estudiantes capaces de comprender críticamente los procesos sociotécnicos que estas tecnologías implican.

Este artículo propone una mirada didáctica sobre la enseñanza de los sistemas de control, concebidos no sólo como contenidos técnicos, sino como una oportunidad para articular conocimientos disciplinares con herramientas pedagógicas orientadas a la interpretación, el análisis y la transformación del entorno. Desde una perspectiva crítica y situada, se plantea la construcción de propuestas contextualizadas, inclusivas y significativas, que integren recursos accesibles, estrategias activas y reflexión pedagógica.

A lo largo del desarrollo, se abordan los fundamentos teóricos y pedagógicos que sustentan la enseñanza de los sistemas de control, se profundiza en una concepción crítica de la tecnología como construcción social, y se analiza cómo estos enfoques pueden materializarse en propuestas didácticas concretas. Se desarrolla un recorrido argumentativo que organiza los núcleos centrales para la enseñanza de estos contenidos: la selección conceptual, la elección de recursos, el diseño de actividades contextualizadas y la incorporación de instancias de reflexión crítica.

Asimismo, se examina el rol docente desde una perspectiva formativa destacando la relevancia del fortalecimiento de las prácticas de enseñanza en el área de Educación Tecnológica y su proyección en los desafíos contemporáneos del campo educativo.

2. Fundamentos teóricos y pedagógicos de la enseñanza los contenidos de Sistemas de Control

La enseñanza de los sistemas de control en el área de Educación Tecnológica plantea desafíos que van más allá de la apropiación de conceptos técnicos. Requiere de marcos teóricos y pedagógicos que orienten la construcción de propuestas didácticas significativas, integradoras y contextualizadas. En este sentido, es necesario situar el abordaje de estos contenidos dentro de una perspectiva crítica, que permita a los y las estudiantes comprender no solo el funcionamiento de los sistemas automáticos, sino también sus implicancias sociotécnicas y culturales.

Este apartado se propone desarrollar los fundamentos que sustentan una enseñanza situada de los sistemas de control, basada en el cruce entre saberes disciplinares, selección de recursos didácticos accesibles, y estrategias pedagógicas activas.

A partir de los aportes de Linietsky (2018), se aborda la tecnificación de las operaciones como un proceso histórico que permite analizar cómo las tecnologías de control fueron reemplazando progresivamente tareas humanas.

Desde esta mirada, se entiende que enseñar sistemas de control no es únicamente enseñar cómo funcionan, sino también por qué y para qué existen, a quién benefician y qué transformaciones implican. Por ese motivo en el área de Educación Tecnológica el desarrollo de estos contenidos tiene como objetivo formar sujetos capaces de comprender, problematizar y actuar sobre los sistemas de control que atraviesan la vida cotidiana.

En este marco, una enseñanza significativa de los sistemas de control requiere clarificar una pregunta fundamental: ¿Qué queremos enseñar cuando enseñamos sistemas de control? Esta interrogante orienta la selección y organización de los contenidos, reconociendo que no se trata simplemente de incorporar tecnologías novedosas, sino de abordar saberes estructurantes que permitan a los estudiantes comprender los principios de funcionamiento de estos sistemas, sus lógicas internas y sus implicancias en la transformación del mundo social y productivo.

Entre los contenidos centrales que deben abordarse se encuentran, en primer lugar, las diferencias entre sistemas de control manuales y automáticos, entendidos como configuraciones tecnológicas que permiten regular procesos con distintos grados de intervención humana. Esta distinción introduce a los estudiantes en la noción de

automatización y en la lógica del reemplazo o delegación de funciones en artefactos o dispositivos programables.

En segundo lugar, es clave enseñar el control por programa fijo y el control por sensores, ya que estos conceptos permiten analizar cómo los sistemas automatizados responden a instrucciones preestablecidas o a condiciones variables del entorno. Comprender estas lógicas abre la posibilidad de explorar el vínculo entre la programación, la toma de decisiones automatizada y la capacidad de respuesta del sistema frente a estímulos externos.

Asimismo, el desarrollo de programas de acciones, constituye otro núcleo fundamental. Estos conceptos les permiten modelar y representar el comportamiento de un sistema técnico mediante esquemas y estructuras lógicas comprensibles. De manera que puedan analizar cómo progresivamente se van delegando acciones en los artefactos, y vayan construyendo la idea de tecnificación, que implica que las personas delegan acciones de control en los artefactos y estos se vuelven más complejos.

Finalmente es indispensable incorporar una reflexión crítica sobre los cambios sociotécnicos que trae aparejada la automatización, interrogando los impactos en el trabajo, la organización social, la sostenibilidad y las relaciones entre humanos y máquinas. Esta perspectiva permite que los contenidos técnicos se vinculen con la formación ciudadana, promoviendo una lectura crítica del mundo tecnológico y habilitando discusiones sobre los criterios que orientan la incorporación de ciertas tecnologías en detrimento de otras.

De este modo, la enseñanza de los sistemas de control en Educación Tecnológica debe combinar el desarrollo de habilidades técnicas con la capacidad de análisis y reflexión sobre los procesos que configuran las tecnologías y sus efectos en la sociedad. La selección de estos contenidos estructurantes no responde a una lógica meramente instrumental, sino a una intencionalidad pedagógica orientada a formar sujetos capaces de intervenir de manera informada, crítica y creativa en los procesos tecnológicos que atraviesan su vida cotidiana.

3. Enseñar tecnología desde una perspectiva crítica y situada

La Educación Tecnológica no puede reducirse a la transmisión de habilidades técnicas. Enseñar sobre sistemas de control implica también formar ciudadanos capaces de interpretar y transformar su entorno. Desde los aportes de Linietsky (2018) sobre la tecnificación de las operaciones, se entiende que el análisis de estos sistemas permite abordar sus implicancias sociales, productivas y culturales. Asimismo, el papel mediador de las TIC, según Richar (2018). habilita nuevas formas de enseñanza cuando se integran de manera reflexiva.

Abordar la enseñanza de la tecnología desde una perspectiva crítica y situada implica recuperar el carácter profundamente social, histórico y cultural de los procesos técnicos. Esta mirada permite trascender una visión instrumental de la tecnología para reconocerla como una construcción humana, en la que se materializan valores, intereses y relaciones de poder. En este sentido, enseñar contenidos vinculados a los sistemas de control no puede limitarse a su funcionamiento técnico, sino que debe integrar una reflexión sobre los impactos que generan en distintos contextos, así como sobre los criterios que guían su diseño, adopción y aplicación.

Tal como señala Barón (2010), el concepto de control puede entenderse como la acción de hacer que en un proceso, sistema o situación —ya sea natural, técnico o social— ocurran ciertas cosas deseadas y se eviten otras no deseadas. Esta definición, que se vincula con la idea de eficacia y eficiencia, permite introducir una noción clave en la enseñanza de estos contenidos: el control como mecanismo de regulación que limita libertades posibles (Barón, 2010). En los sistemas técnicos, el control se manifiesta en dispositivos, materiales o programas que regulan variables físicas, como la temperatura, la luz, el sonido o el movimiento.

Desde esta perspectiva, es interesante trabajar con los y las estudiantes la relación entre acciones de ejecución y acciones de control, tanto en sistemas manuales como automatizados. Por ejemplo, al cortar con una tijera, se realiza una fuerza principal (ejecución), pero también una serie de pequeñas correcciones para seguir la línea deseada (control). Estas distinciones, aplicadas a herramientas o artefactos cotidianos, permiten visibilizar cómo los sistemas técnicos replican, automatizan o delegan funciones humanas mediante sensores, programas y dispositivos de control.

Incorporar esta mirada en el aula implica problematizar los procesos de automatización, no solo como avance técnico, sino como fenómeno sociotécnico. ¿Qué trabajos se ven transformados o desplazados por sistemas autorregulados?, ¿cómo se distribuyen los beneficios y los costos de la automatización?, ¿qué decisiones humanas están detrás de los algoritmos y sistemas automatizados que se presentan como neutros?

Esta postura pedagógica supone habilitar espacios donde los y las estudiantes puedan reconocer los principios de funcionamiento de los sistemas de control, identificar las formas en que estos transforman su entorno, y desarrollar herramientas conceptuales y técnicas para intervenir de manera reflexiva y creativa en los procesos tecnológicos que los rodean.

4. Sobre la construcción de propuestas pedagógicas

Tal como se desarrolló en los apartados anteriores, la enseñanza de los sistemas de control requiere una selección fundamentada de contenidos que articule los saberes de los NAP con una postura pedagógica situada y crítica. Esta elección debe guiar el diseño de propuestas didácticas que permitan una apropiación significativa por parte de los y las estudiantes, considerando sus contextos, trayectorias y posibilidades concretas de trabajo en el aula.

Uno de los aspectos centrales en este proceso es la selección de recursos didácticos, entendidos como mediadores del aprendizaje. En este sentido, se propone el uso de kits tecnológicos accesibles y software gratuito, cuya incorporación responde a una serie de criterios pedagógicos y didácticos que orientan su uso reflexivo y progresivo:

Criterios para la selección de recursos

- Accesibilidad: Se prioriza la utilización de hardware de bajo costo y software libre y gratuito, que pueda ser implementado en instituciones educativas con recursos limitados. Esta elección permite ampliar las posibilidades de trabajo grupal, al facilitar la disponibilidad de varias unidades para promover la manipulación directa y el trabajo en pequeños grupos.
- Exploración gradual: Los kits seleccionados deben permitir la exploración modular de sus componentes, adaptándose a distintos niveles de

conocimiento y habilidades motrices. Esta característica facilita una apropiación progresiva, respetando los ritmos individuales de aprendizaje.

- Gradualidad en la complejidad: Es necesario que tanto los recursos físicos como digitales posibiliten una complejización escalonada de las propuestas.
 Por ejemplo, se puede iniciar con actividades básicas —como encender un LED o accionar un motor— e incorporar progresivamente nuevos elementos, como la lectura de sensores, la programación de estructuras condicionales o el diseño de algoritmos con bucles.
- Promoción de la autonomía: La organización del trabajo en niveles de dificultad creciente fomenta la autonomía de los y las estudiantes, consolidando los aprendizajes en cada etapa y potenciando su capacidad para enfrentar nuevos desafíos con herramientas cognitivas y técnicas.

Una vez definidos los contenidos y seleccionados los recursos, el siguiente paso en la construcción de la propuesta consiste en identificar problemas o situaciones significativas que sirvan como disparadores para el aprendizaje. En este punto, se sugiere el diseño de actividades centradas en la resolución de problemas contextualizados, tales como el armado de sistemas sencillos (alarmas, semáforos, robots móviles, entre otros), que permitan a los estudiantes aplicar los conocimientos adquiridos de forma activa y significativa.

Estas propuestas no deben quedarse en el plano técnico. Por el contrario, es fundamental incorporar instancias de reflexión crítica que promuevan el análisis de los impactos sociotécnicos de los procesos de automatización: ¿Qué implicancias tiene delegar ciertas funciones a sistemas automatizados? ¿Cómo afectan estas decisiones a la organización del trabajo y a la vida cotidiana? ¿Quién decide qué se automatiza y con qué fines?

Este recorrido metodológico —desde la selección de contenidos y recursos hasta la implementación de actividades y la reflexión crítica— favorece un aprendizaje activo, que integra el desarrollo de habilidades técnicas con el pensamiento analítico y la formación ciudadana. Así, se consolida un enfoque didáctico que reconoce a la tecnología no solo como objeto de estudio, sino como campo de intervención pedagógica, en el que se forman sujetos capaces de comprender y transformar su entorno.

5. El rol docente

El diseño e implementación de propuestas didácticas para la enseñanza de los sistemas de control requiere no solo del conocimiento técnico, sino también de una formación docente que articule saberes disciplinares, competencias didácticas y capacidad de análisis crítico del contexto. En este sentido, el rol docente es clave como mediador de experiencias significativas de aprendizaje, así como actor reflexivo que puede repensar sus propias prácticas a partir del diálogo con otros y de la actualización permanente.

Con el objetivo de acompañar y fortalecer este proceso, se diseñó un dispositivo de capacitación docente que integra tres dimensiones complementarias: la actualización disciplinar, el desarrollo didáctico y la reflexión pedagógica colaborativa. Este enfoque busca responder a las demandas actuales de la enseñanza de la tecnología en el nivel secundario, reconociendo la necesidad de construir saberes situados, pertinentes y sostenibles en función de las realidades institucionales.

Actualización disciplinar

La primera dimensión del dispositivo formativo se orienta a fortalecer los conocimientos técnicos fundamentales que los y las docentes necesitan para abordar los contenidos de sistemas de control en el aula. Esta actualización se organiza en torno a cuatro ejes:

- Electricidad básica: comprensión de circuitos simples y conexiones de componentes eléctricos.
- Electrónica básica: identificación de señales digitales y analógicas, reconocimiento de entradas y salidas, uso de sensores y actuadores.
- Programación por bloques: introducción a estructuras fundamentales como secuencias, bucles y condicionales, en entornos accesibles y visuales.
- Lectura de diagramas de flujo: representación gráfica de acciones de ejecución y control, como forma de planificación, análisis y comunicación técnica.

Estos saberes no se conciben como conocimientos previos excluyentes, sino como un horizonte formativo que los docentes pueden construir progresivamente a partir de experiencias prácticas, acompañadas por el dispositivo de capacitación.

Desarrollo didáctico

La segunda dimensión busca articular los contenidos técnicos con estrategias pedagógicas activas y contextualizadas. Se promueve el diseño y la implementación de propuestas que integren actividades significativas, tales como:

- El armado de sistemas de control sencillos, como alarmas, semáforos o barreras automáticas, que permitan aplicar los conceptos aprendidos.
- La elaboración de esquemas de representación, como diagramas de flujo, que sirvan para organizar y comunicar procesos técnicos.
- El desarrollo de proyectos de resolución de problemas, en los que los estudiantes usen kits de robótica y software accesible para abordar desafíos reales o simulados, promoviendo la creatividad y el trabajo colaborativo.

Estas propuestas no se limitan a la dimensión técnica, sino que incorporan una mirada crítica sobre los efectos de la automatización en distintos aspectos de la vida cotidiana, abriendo espacio para la reflexión sobre sus impactos sociales, culturales y laborales.

Reflexión pedagógica colaborativa

Finalmente, el dispositivo de formación sostiene la necesidad de generar espacios de intercambio entre docentes, donde se puedan compartir experiencias, analizar prácticas y construir colectivamente nuevas estrategias de enseñanza. Esta dimensión reconoce el valor del trabajo colaborativo como motor del desarrollo profesional continuo y como condición para la consolidación de comunidades pedagógicas activas.

Desde esta perspectiva, los y las docentes no son meros receptores de propuestas externas, sino protagonistas en la producción de saberes y en la transformación de sus propias prácticas. La propuesta formativa se adapta a las características y recursos de cada contexto educativo, y promueve una enseñanza crítica, situada y reflexiva de la tecnología.

En síntesis, el rol docente en la enseñanza de los sistemas de control implica la combinación de conocimientos técnicos, criterios didácticos y compromiso pedagógico con una formación que habilite a los estudiantes a comprender, cuestionar y actuar sobre los procesos tecnológicos que configuran su realidad.

6. Conclusiones

A lo largo de este artículo se ha desarrollado una propuesta didáctica centrada en la enseñanza de los sistemas de control en el área de Educación Tecnológica, poniendo en diálogo fundamentos disciplinares, criterios pedagógicos y recursos accesibles. En este marco, se destacó especialmente el potencial didáctico de los kits de programación y robótica, no solo como herramientas técnicas, sino como tecnologías educativas que habilitan nuevas formas de enseñar, aprender y reflexionar críticamente sobre los procesos sociotécnicos contemporáneos.

Es importante subrayar que el abordaje de estos contenidos no es nuevo en la Educación Tecnológica. Durante años se han desarrollado experiencias valiosas mediante el uso de sistemas electromecánicos —como semáforos armados con cilindros, sistemas automatizados con levas o tarjetas perforadas— que permitieron modelizar problemas técnicos reales en el aula. Estas propuestas, enmarcadas en un enfoque epistemológico y didáctico sólido, siguen teniendo plena vigencia y son fundamentales para comprender el desarrollo histórico de los sistemas de control.

Sin embargo, la incorporación de kits de robótica y software de programación por bloques, accesibles tanto económica como operativamente, ha abierto nuevas posibilidades para el trabajo didáctico con estos contenidos. Estas herramientas permiten representar y resolver problemas técnicos en menor tiempo, favorecen la autonomía del estudiantado, y hacen posible avanzar de manera gradual en la complejización de los sistemas de control, respetando los distintos ritmos de aprendizaje.

Además, el uso de simuladores digitales como Tinkercad o RoboMind complementa estas experiencias, especialmente en contextos donde no se dispone de kits físicos. Estos entornos virtuales permiten trabajar conceptos de programación, representación de flujos y lógica de control con precisión y flexibilidad, reduciendo las limitaciones materiales y favoreciendo la inclusión.

Es fundamental aclarar que el uso de estos recursos no implica que en el área de Educación Tecnológica se enseñe robótica o ciencias de la computación como contenidos en sí mismos. Lo que se enseña son contenidos específicos del campo tecnológico, prescriptos en los Núcleos de Aprendizaje Prioritarios (NAP) y en los diseños curriculares jurisdiccionales, tales como los sistemas de control, la representación de procesos y los impactos sociotécnicos de la automatización. Los kits y los simuladores no son fines en sí mismos, sino medios didácticos que potencian la comprensión de estos contenidos y facilitan su integración en propuestas situadas y significativas.

En suma, la incorporación crítica y pedagógica de tecnologías educativas en el aula no solo mejora la enseñanza de contenidos, sino que también habilita espacios para que los y las estudiantes analicen, modelicen y reflexionen sobre los sistemas que organizan la vida cotidiana. Desde esta perspectiva, la innovación tecnológica en educación no reemplaza los enfoques construidos históricamente, sino que los amplía, los articula y los resignifica en función de los desafíos actuales.

Referencias bibliográficas

- Barón, M. (2010). Las tecnologías del control. En V. Fernández Caso & A. Díaz (Coords.), Educación tecnológica: abordaje didáctico en el nivel secundario (pp. 22–38). Escuela de Capacitación Docente CEPA. Disponible en https://buenosaires.gob.ar/areas/educacion/cepa/aavv ed tecnologica.pdf
- Linietsky, C., & Orta Klein, S. (2018). Propuesta para el Ciclo Básico Secundario.
 En S. Orta Klein (Ed.), Educación tecnológica: Un desafío didáctico (pp. 241–263). Novedades Educativas.
- Ministerio de Educación del Gobierno de la Ciudad Autónoma de Buenos Aires (2018). Educación tecnológica.Los sistemas automáticos: primer año. - 1a edición para elprofesor -. Dirección General de Planeamiento Educativo. Recuperado de:

https://buenosaires.gob.ar/sites/default/files/media/document/2018/07/20/15b550 7ee5efda3a33daa61ed2fb57d1e12399f2.pdf

- Ministerio de Educación e Innovación de la Ciudad Autónoma de Buenos Aires
 (2018). Del control automático a la robótica. Recuperado de:
 https://buenosaires.gob.ar/sites/default/files/media/document/2018/09/28/9f10944
 17dd728b1008ff1096272157e8f8df67d.pdf
- Richar, D. (2018). El lugar de las TIC en la Educación Tecnológica. En S. Orta Klein (Ed.), Educación tecnológica: Un desafío didáctico (pp. 167–191).
 Novedades Educativas.